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The phase transition behavior of a dimer model on a three-dimensional lattice is 
studied. This model is of biological interest because of its relevance to the lipid 
bilayer main phase transition. The model has the same kind of inactive low- 
temperature behavior as the exactly solvable Kasteleyn dimer model on a 
two-dimensional honeycomb lattice. Because of low-temperature inactivity, de- 
termination of the lowest-lying excited states allows one to locate the critical 
temperature. In this paper the second-lowest-lying excited states are studied and 
exact asymptotic results are obtained in the limit of large lattices. These results 
together with a finite-size scaling ansatz suggest a logarithmic divergence of the 
specific heat above T C for the three-dimensional model. Use of the same ansatz 
recovers the exact divergence (a = 1/2) for the two-dimensional model. 

KEY WORDS: Dimer model; phase transition; lipid bilayer; transfer ma- 
trix; random walk; generating function; critical exponent. 

1. I N T R O D U C T I O N  

E x a c t  so lu t ions  s h o w  tha t  d i m e r  m o d e l s  on  t w o - d i m e n s i o n a l  la t t ices  exh ib i t  

a va r i e ty  of  p h a s e  t r ans i t ion  b e h a v i o r .  T h e r e  is one  class of  m o d e l  wh ich  

exhib i t s  a l o g a r i t h m i c  d i v e r g e n c e  of  the  speci f ic  heat ,  f ami l i a r  f r o m  the 

t w o - d i m e n s i o n a l  I s ing  mode l .  O n e  e x a m p l e  is the  d i m e r  m o d e l  on  the  4 - 8  

la t t ice ,  ( ~  w h i c h  has  b e e n  used  to m o d e l  the  t r ans i t ion  in SnC122H20.  

A n o t h e r  class of  d i m e r  m o d e l  exhib i t s  " 3 / 2 - o r d e r "  t ransi t ions(2);  in such  

t r ans i t ions  the  spec i f ic  h e a t  d ive rges  as ( T - T c )  -1 /2  in the  d i s o r d e r e d  

p h a s e  b u t  the re  is no  d i v e r g e n c e  in the  o r d e r e d  phase .  T h e  first  m o d e l  in 

I Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. 
2 Baker Laboratory, Cornell University, Ithaca, New York 14853. 

361 
0022-4715/83/0800-0361503.00/0 �9 1983 Plenum Publishing Corporation 



362 Bhattacharjee et ai. 

Z 
Y 

L /  ,X  

I 

I I ! ;Y 
Fig. 1. The models considered in the paper. Each vertical dimer has zero energy and each 
horizontal dimer has energy e. (a) Kasteleyn model (the K-model) on a "brick" lattice. Each 
lattice site is paired by one dimer to a nearest-neighbor site. The particular state shown has 
one horizontal dimer in each z-level. This forms a domain wall as indicated by the dashed 
lines, with no change of phase (p = 1) between domains. (b) The three-dimensional IA model. 
Here each lattice site can be paired by a dimer to one of the five nearest-neighbor sites. The 
particular state shown also has one horizontal dimer in each lattice plane corresponding to an 
n = 1 excitation of the transfer matrix (see text). 

this class was d iscovered by  Kasteleyn(3);  it is def ined  in Fig. l a  and  has 
been  cal led the K-mode l .  (4) The  K - m o d e l  is inact ive or  " f rozen"  in the 
low- tempera tu re  phase  in the sense that  the equi l ibr ium state is the g round  
state for  all T < T c. A l though  ano the r  mode l  in this same class has a 
nonzero  specific hea t  (5) be low T~, it  too exhibi ts  a stiffness or frozen 
behavior ,  though only part ia l ,  in the low- tempera tu re  phase3: in par t icular ,  

the specific hea t  is comple te ly  nons ingu la r  below T c . 

I somorph ic  t rans format ions  of d imer  mode l s  f rom the second class 
have  been  used  to s tudy phase  t ransi t ions  in h y d r o c a r b o n  chain  systems of 
l ipids (7) and  polymers .  (8~ One  clear  shor tcoming  of these models  is the loss 
of a re levant  d imension .  O) Unfor tuna te ly ,  present ly  avai lab le  me thods  do 
not  pe rmi t  exact  solut ion of th ree -d imens iona l  d imer  models .  Nevertheless ,  

3 Incidentally, the transition in the K-model may also be described as an example of a p = 1 
commensurate-incommensurate transition. The square root divergence in the specific heat 
supports the general phenomenological argument of Fisher and Fisher (6) concerning critical 
exponents. 
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exploratory research on three-dimensional models is in order, and recently 
Izuyama and Akutsu(l~ (to be referred to as IA) have initiated this line of 
investigation. They have introduced a model, to be called the IA model, 
that is a possible three-dimensional extension of the two-dimensional 
K-model. This model is shown in Fig. lb. Actually, the three-dimensional 
dimer model which is the best analog of the lipid hydrocarbon model is 
somewhat different from the IA model. Compared to Fig. lb it would have 
no bonds parallel to the x axis in even-numbered lattice planes and no 
bonds parallel to the y axis in odd-numbered ones. The lipid hydrocarbon 
analog would then have a ratio of two gauche ro tamers /one  trans rotamer 
compared to the four gauche/one  trans rotamers in the three-dimensional 
IA model. The analysis carried out here for the IA model has also been 
done for this model and the main result is the same as for the IA model. 
This strongly suggests that the two models have the same transition 
behavior. We shall therefore discuss the IA model because it is simpler. 
Basically the IA model involves a simple cubic lattice with regularly spaced 
forbidden bonds in the vertical direction. Each vertical dimer has zero 
energy, each horizontal dimer has energy e, and each site must be occupied 
by a dimer. 4 

The thermodynamic behavior of the IA model has many similarities to 
the behavior of the two-dimensional K-model. In particular, it is completely 
inactive in the low-temperature phase. This feature is easily seen by starting 
with the ground state and trying to shift one vertical dimer into a horizontal 
position. This requires shifting one vertical dimer in each of the M layers of 
the system, thereby costing an energy Me. Even though this energy is very 
large for large M, there are four ways to shift each dimer. Therefore, the 
free energy of this set of lowest-lying excited states is M(E -- kTln4) .  Such 
states will be thermodynamically preferred to the ground state only when 
k T  > e / l n 4  = k T  C. This simple argument 5 locates the critical temperature 
T c exactly. In addition to locating T~, IA also claimed to show rigorously 
that, unlike the K-model, the specific heat, C(T), remains finite as T ~  Tc 
from the disordered phase. Their derivation involves a kind of random 

4 Incidentally Priezzhev OI) has recently proposed a three-dimensional lattice model for which 
the dimer problem can be solved exactly. The lattice is also a simple cubic lattice with the 
restriction that dimers cannot form a closed path (for definition see Ref. 11). The model, 
however, has regular thermodynamic behavior and shows no phase transition. In contrast the 
IA model exhibits a phase transition at finite temperature. 

s Such a simple argument was also instrumental in locating the exact transition temperature of 
the Slater KDP six-vertex model in any dimension. A rigorous proof was given for the KDP 
model using series expansions. (12) For the lipid analog model such an argument gives 
T C = c / ( k  In 2). 
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phase approximation utilizing the free fermion basis states. This derivation 
does not appear to us to be rigorous. However, their derivation does obtain 
the correct specific heat divergence for the two-dimensional K-model, so it 
cannot be dismissed out of hand. 

The first purpose of this paper is to provide evidence that contradicts 
the claim of IA to have proved rigorously the finiteness of the specific heat 
at T c. The second purpose is to provide evidence that C(T) diverges as 
- l n ( T -  To) as T ~  T~ + for the IA model, although we emphasize that 
this is not a rigorous result. Our method involves an exact calculation in 
Section 4 of the asymptotic behavior of the largest eigenvalue of the 
transfer matrix for statistical states which are twice perturbed from the 
ground state and so have two horizontal dimers in each horizontal lattice 
plane. Although such low-lying states play little role in most phase transi- 
tions, we have already seen that consideration of just the singly perturbed 
states in these dimer models yields the exact transition temperature, so one 
can expect there to be more information in low-lying excitations in this 
kind of model than in other models, such as spin models, which have 
nontrivial low-temperature phases. In Section 3 an ansatz is developed 
which relates the behavior of the twice-perturbed states to the critical 
behavior of the specific heat. This is preceded by a discussion of the 
transfer matrix in Section 2. 

2. QUALITATIVE CHARACTERIST ICS OF THE TRANSFER MATRIX 

We consider the generalization of the two-dimensional K-model to 
arbitrary dimensionality, including the three-dimensional IA model. "Fi- 
nite" versions of these models consist of finite cross sections with linear 
dimension N along ( d -  1)-dimensional lattice planes perpendicular to the 
z axis in Figs. la and lb and with periodic boundary conditions in these 
lattice planes; the system remains infinite along the z axis, i.e., M ~  ~ ,  
where M is the number of such lattice planes. A plane midway between two 
such adjacent lattice planes will be called a layer and is pierced by �89 N d- i 
vertical bonds. (Even N will be assumed.) A vertical bond not occupied by 
a dimer will be said to produce a hole in the layer. The transfer matrix, Q, 
transfers from layer to layer in the z direction. The basis set, {~), for Q 
designates the positions of the holes in a layer. The ground state therefore 
consists o f  the "vacuum" state with no holes, ~b 0 and Q~0 = ?t0~0, where 
~0 = 1. The lowest-lying excited states, {+}3, consist of one hole in a layer, 
and from the Introduction it is clear that Q operating upon any state in this 
set gives a sum of states from this set. Similarly, if there are n holes in one 
layer, then all other layers have n holes. Therefore, the transfer matrix is 
already block diagonal in the { q~) basis and every nonzero element of the 
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nth block has the Boltzmann factor e-n#" as the statistical weight. For finite 
models of size M N  d- 1 the largest eigenvalue, k~e -#~, from the n = 1 block 
(which is �89 N d- ~ • �89 N a- 1 in size) becomes degenerate with ?~0 at T C, and 

for T > Tr k l e- /~ > ?~o. For T < T~, k0 is the largest eigenvalue of Q. 
Therefore, there is a first-order transition with latent heat M~ at T~. For 
finite systems there is also a temperature T 2 > T C at which the largest 
eigenvalue ~k2 e-zBc from the n = 2 block becomes degenerate with kle -#", 
and so on. Therefore, the finite system exhibits a sequence of first-order 
transitions each with AE = Me. This is equivalent to a sequence of delta 
functions in the specific heat at a sequence of temperatures, T~ < T z < T 3 
< . - . ,  until the system becomes maximally disordered. (This behavior is 
also seen in the Slater KDP ferroelectric six-vertex model.) As the width, N, 
of the system becomes larger, there are more transitions, Tn(N), and the 
limit of T,,(N) approaches T c as N--> oo for fixed n. Also, the first-order 
jump becomes smaller at each Tn(N ) when measured per lattice site, 
A E / M N  d - l =  e / N  a-1. As the limit of an infinite system is approached, 
the infinite sequence of delta functions approaches a specific heat function 
which should be analytic except at T c (assuming only one true phase 
transition in the infinite limit). The way in which an infinite specific heat 
could develop at T~ as N ~  oo is for the local density of first-order jumps to 
approach infinity more rapidly than N d- ~. Stated more mathematically, let 
us approximate the specific heat for Tn_I(N ) < T < T~(N) by 

C ( T )  ~ ( A E / M N a - 1 ) / [  T , ( N )  - T , _ I ( N ) ]  (1) 

and, quite generally, introduce the scaled density of jumps, g(N; p), as 

g ( N ; n / U  a-l )  = N ~ - ( a - ' ) / [ T n ( N  ) - Tn_ , (N)]  (2) 

where p = n / N  a-~ represents the density of holes. Then for large N we 
have 

C ( T )  ~ eg(N; p) (3) 

and it is reasonable to hope that g(N; p) approaches, as N ~  o% a smooth 
function of p and N. Thus if g,,(N)=--g(N; n / N  a-l)  diverges to oe in the 
limit N ~ oo at f ixed n (i.e., as p--> 0), one may conclude that the specific 
heat diverges to oo at the transition. We shall, in fact, show that g2(N) 
remains bounded for d > 3, diverges logarithmically with N when d = 3, 
and diverges as N for d = 2. 

3. PROCEDURE FOR TESTING THE IA APPROXIMATION AND FOR 
OBTAINING ESTIMATES OF THE SPECIFIC HEAT EXPONENT 

In their treatment IA introduced an approximation for computing the 
largest eigenvalue in any block of the transfer matrix corresponding to n 
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holes. (~~ They express their result in terms of the free energy per lattice 
site, f(P), where, as above, O -- n~ N d -  i is the density (we will extend IA's 
discussion for d -- 2 and d -- 3 to arbitrary dimensionality d) and 

f (o)  = - (  k T /  Nd-1) ln) t .  + Oe = (e - k T ln  q) 0 - ( k T /  N d - 1 ) l n ( k . /  q n) 

(4) 

In this expression q represents the number  of nearest neighbors in a 
horizontal lattice plane. For our problem q -- 2 ( d -  1). IA then claim that 
for N--~ oo 

ln(Xn/qn) ~ _ Ban(a+ ,) /(a- 1 ) / N  2 (5) 

where B a is independent of N, so that 

f (o )  = (~ - k T l n q ) o  + bkTo (d+l)/(a-~) + higher-order terms (6) 

From this it is easy to obtain the specific heat behavior in the following 
way. For k T <  k T  c = c / l nq ,  the minimum of f (p) occurs at P = 0. Just 
above Tc the mean value of 0 is obtained by minimizing the first two terms 
in (6). Since (e - k T l n q )  is proportional to (T~ - T) this yields 

0- (T - )(d- (7) 

and since the internal energy is just pe, one has 

C ( T )  = e d o / d T ~ e ( T  - T~ )(d-3)/2 (8) 

This yields the correct square root divergence for d = 2 but predicts a finite 
value for C at T~ when d = 3. 

The focus of this paper is on Eq. (5). Although it seems very hard to do 
calculations for all values of n and N, the special case, n = 2, allows a 
critical evaluation of the central result in IA's approximation. (l~ It  may be 
emphasized that, although IA are interested in the limit n --~ oo along with 
N - ~  oo at fixed p, their approximation does not specifically utilize the limit 
n -~ oo and should apply equally for fixed n. Our studies confirm the known 
result (6) 

ln(?t2/4 ) ~ - ~ 2 / N 2  (9) 

for the two-dimensional K-model,  in agreement with IA. However, in three 
dimensions, we prove that 

ln(X2/16 ) ~ - ~r/(U21nN ) (10) 

This proves that Eq. (5) is not correct for d = 3. It  fails also for d > 3 where 
the correct variation is 1 / N  a- 1. 

Unfortunately, from these special results for n --- 2 we cannot claim to 
have found a general formula to replace Eq. (5), as is really required. 
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However, let us make an ansatz that generalizes (9) and (10) to all values of 
n. For a given dimensionality, this ansatz requires Xn for all n such that 
n / N  a-1 is small to have the same N dependence as ?~2 when N---> m. In 
addition, for thermodynamic consistency, we need N-ca-1)ln(Xn/qn ) in (4) 
to be a function of O only, thereby requiring 

ln(X, /q")  ,-~ - U (a- l ) A ( n / U a - l )  (1 1) 

for N o  m with n / N  d- 1 small but not necessarily vanishing. For d = 2 this 
ansatz predicts 

ln()~, /2")~ - n 3 / N  2 = - Np 3 (12) 

in agreement with (5) which gives the exact square root divergence in (8). 
For d = 3 the ansatz predicts 

l n ( ~ , / 4 " ) ~  - n2/[ N21n( N Z / n )  ] = N2pZ/ lnp (13) 

Inserting this into (4) yields 

f (p)  = (e - k T l n q )  O - b ' kTp2 / lnp  + higher-order terms (14) 

so that C ( T ) ~ l n ( T -  To). This result is in disagreement with the prediction 
of IA that C(T) remains finite at To. However, the divergence is much 
weaker than in two dimensions. 

4. ASYMPTOTIC BEHAVIOR OF THE LARGEST EIGENVALUE OF 
THE n = 2 BLOCK 

For finite N, the n = 2 block of the transfer matrix can be constructed 
easily by counting the number of ways the state of a layer goes into the 
states of the next layer. Many of these states are symmetrically related 
because of the translational symmetry of the system, and this allows one to 
consider a reduced matrix for which the basis set consists of each class of 
symmetrically related states. ~ 12) 

For the two-dimensional K-model there are N '  = N / 2  sites in each 
layer and so there will be N ' / 2  reduced basis states (we shall consider only 
even values of N'). The reduced transfer matrix has the form 

~i,j = 28i,j + ~ij+l "4" ~i+lj "[- ~i,(N/4)-I~j,(N/4) (15) 
The eigenvalues of this matrix (which is almost a Toeplitz matrix) are 
simply 4cos2(0p/2) where 0p = (2p - 1)~r/N' withe  going from 1 to N ' / 2 .  
The largest eigenvalue )~2 is therefore 4cos2(rr /N) which behaves as ~2 
, ~ 4 ( 1 -  qr2/N 2) when N---> oo, so yielding the result quoted in (9). This 
agreement lends confidence to the ansatz introduced in the previous 
section. 
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For the three-dimensional IA model construction of the transfer ma- 
trix is quite straightforward but we have not succeeded in completely 
diagonalizing the n -- 2 block. However, it is possible to obtain the asymp- 
totic behavior of the largest eigenvalue of the n = 2 block by using random 
walk techniques (]3-15~ as we show in the remainder of this section. Think of 
each of the two holes in a given layer as corresponding to a random walker 
on a square lattice, the sites of which correspond to the projection of the 
vertical bonds of the three-dimensional IA lattice onto the (x, y) plane. 
Each hole on an adjacent layer to the original layer in the IA lattice then 
corresponds to one of the random walkers moving by one lattice spacing on 
the square lattice. Each n = 2 state of the IA three-dimensional model with 
M layers has a 1-1 correspondence with a random walk of two random 
walkers on the square lattice with M steps/walker, but with the restriction 
that after both walkers have taken the same number of steps, they are not 
both at the same site. Since the starting points of the random walkers are 
on the same sublattice of the square lattice, one has another obvious 
restriction, namely, that they will both be on the same sublattice after the 
same number of steps. We note that this random walk isomorphism extends 
directly to other dimensionalities (and lattice structures) and to other values 
of n. For the two-dimensional K-model the random walk lattice is one 
dimensional. This leads to an important distinction between the IA model 
and the K-model, namely, that in the K-model the walkers cannot ex- 
change positions (except by using the periodic boundary conditions): this 
allows the free-fermion method to be exact. 

Because of the periodic boundary conditions in the (x, y) plane and 
the resulting translational symmetry, it is much simpler to consider a 
relative random walk of a single new walker defined as follows: Let the 
position of the single new walker be the vector position of the first original 
walker minus the position of the second original walker so that this relative 
walker is always on a sublattice of the original square lattice. One way to 
think of this relative walker is as a giant who takes large steps on one 
sublattice only. We can also think of the relative walker as a midget who 
takes smaller steps on the original lattice such that the odd-numbered steps 
of the midget [e.g., the (2m + 1)st step] correspond to the steps of the first 
original walker [in fact the (m + 1)st step] and the even-numbered steps of 
the midget [e.g., the (2m + 2)nd step] correspond to the steps of the second 
walker [the (m + 1)st step] in the opposite direction. Each pair of successive 
odd-numbered and even-numbered steps of the midget corresponds to one 
step of the giant on the sublattice. The restriction that the original walkers 
can never be at the same site at the same time corresponds to the relative 
random walker (in either giant or midget representation) not being allowed 
to visit the origin. 



Critical Behavior of a Three-Dimensional Dimer Model 369 

For the giant, let C~ be the total number of random walks with M 
steps that start on the sublattice containing the origin o, but never visit the 
origin. (The primed quantities will henceforth refer to the giant's walk and 
the unprimed quantities to the midget's walk.) The finite square lattice 
contains N 2 lattice sites. Then, the largest eigenvalue of the n = 2 block of 
the transfer matrix is related to C~ by 

•2 = lim (C~t)~/M (16) 
M-~oo  " 

It is most convenient to consider the generating function defined by 

C'(z) = ~ zMC~I (17) 
M = 0  

because from (16) and the root test, the radius of convergence of C'(z) 
gives the reciprocal of X2. In computing Cs we shall use an open boundary 
condition along the z direction on the original three-dimensional IA lattice; 
this corresponds to allowing the walker to be anywhere on the sublattice at 
the end of the M-step walk and not necessarily at the starting point as 
would be required by complete periodic boundary conditions. Although the 
periodic boundary condition gives a more complicated expression for Cs 
we have shown that the limiting behavior as M ~ m is the same, as is to be 
expected. Therefore we have 

C h = ~2' 2 ' C s  (p---~q) (18) 
P q 

where Cs (p ~ q) is the number of walks which begin at p and end at q after 
M steps avoiding the origin and the primed sums run over all p and q on 
the sublattice containing the origin. 

The expression of C'(z) in terms of simpler functions follows a 
procedure used by Montroll for walks which become trapped at the 
origin. (15) Let W~t(p~q) be the number of ways of going from p to q in 
exactly M steps, and F~t (p ~ q) be the number of ways of going from p to q 
for the first time in M steps. The fundamental relation among these 
quantities is 

M 

W~t (p ---> q) = C~t(p---~q) + ~2 Fj'(p---~o) Ws (19) 
j = 0  

because the first term on the right side gives the number of ways of going to 
q avoiding the origin, o, whereas the second term gives the number of ways 
of visiting the origin at least once in M steps. Defining the generating 
functions 

G'(z;p-->q)= ~ z MG~ (p --> q) (20) 
M = 0  
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where G '  m a y  be W' ,  C ' ,  or F ' ,  allows the fundamenta l  relation (19) to be 
writ ten more  simply as 

W ' ( z ; p ~ q )  = C ' ( z ; p ~ q )  + F ' ( z ; p ~ o ) W ' ( z ; o ~ q )  (21) 

Next,  define the overall generat ing funct ions 

G'(z) = ~,,' ~.,' G'(z; p---> q) (22) 
p q 

where, again, G '  = W' ,  C ' ,  and  F '  in turn. Summing  (21) over  p and  q on 
the sublattice and  using the t ranslat ional  invar iance of W '  and  F '  (but not 
of C ' )  on p - q, one obtains  

N,2W'(z) = N)C'(z )  + F ' ( z )W' ( z )  (23) 

because the sublatt ice has N, ~ �89 N 2 lattice sites; therefore, one has 

C'(z) = W ' ( z ) [  1 - F'(z) /N~ 2] (24) 

Expressions for W'(z) and F'(z) are well known r J3-15) and  will not be  
rederived6: we have  

F'(z)  = W ' ( z ) / W ' ( z ;  o---> o) (25) 

W'(z)  = Ns[1 - zw't(O)]-1 (26) 

W'(z; o-->o) = Ns-'  ~ [1 - z w ] ( k ' ) ] - '  (27) 
k' 

where the k'  are the reciprocal  vectors for  the finite sublatt ice with 
componen t s  k~, i = l, 2 . . . . .  d -  l, and  w](k') is the Fourier  t ransform of 
the giant 's  single-step walk, i.e., 

w](k')  = ~ ,  [ e x p ( i k ' .  p)]  w'p (28) 
p 

in which the sum runs only over  lattice sites p to which the giant can go in 
a single step f rom the origin, in W'p distinct ways. As the total n u m b e r  of 
allowed single steps of the giant  is q2 we have  the relation ~,p W'p = q2. 

Now,  the relation (24) becomes  

k' 

(29) 

At first glance it would appear  that  this expression has a singularity at 

6 Montroll uses P in place of W' and there is the inconsequential difference that P is a 
probability rather than a number of walks. The sum over M for F'(z) in our definition goes 
from 0 to o0 and not from 1 as in these references. This is the reason why we do not have a 
&function term in Eq. (25). 
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z = 1/W'l(0 ) = 1/q 2. However, this is not so, as can be seen by expanding 
the sum in the denominator about z = 1/w'l(0 ). Writing X = [1 - zw'l(0)], 
one has 

C'(z)= NsX-I(1- X-I{ X-I + ao + O[ X]} -1) (30) 

where a 0 is a constant. Thus C'(z) has a finite limit, namely, a0, when 
z--) 1/w'l(0 ). Hence the radius of convergence of C'(z) is determined by the 
smallest zero of the denominator which, by (24) and (25), is the zero of 
W'(z; o ~ o), that lies closest to z = 0. We therefore need the solution of 

W'(z;  o--) o) = 0  (31) 

It is possible to analyze the above equation completely to obtain our 
results. However, it is also possible to utilize some asymptotic results 
obtained by Montroll, (15) by considering the midget's walk on the original 
lattice, and this is the procedure we follow in this paper. For the midget, 
using (20), we define 

W(Z;O-~O) ~- ~ zMWM(O---)O) (32) 
M = 0  

But as it is not possible for the midget to come back to the starting point in 
an odd number of steps, W2M+I(O~O ) vanishes for all values of M. Also 
the relation between the midget's walk and the giant's walk shows that 
W ~ ( o ~ o )  = W2M(O--)O ). Using these in (32), we find 

z2MW2M(O- O) 
M = 0  

= z2Mw;, (O -+ O) 
M 

= Wh(z2;o- o) 
from (20). Hence the square z~ of the solution of W(z o; o --) o) = 0 will give 
the relevant zero of W'(z; o--) o). 

For the midget walking on the original lattice, one has a relation 
similar to (27), namely, 

W(z; o--) o) = N -2 ~,  I 1 -  zwl(k)] -1 (33) 
k 

where, for general dimensionality, the k are the reciprocal vectors for the 
finite ( d -  1)-dimensional hypercubic lattice with components k i = 2~rrJN 
with r~ = l, 2 . . . . .  N while 

d - 1  

w,(k) = E [exp(ik .p)] = 2 E cosk/ (34) 
p i = 1  
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in which the sum runs only over the lattice sites p which are nearest 
neighbors of the origin. We therefore need the solution of 

W(z;o---~o) = N-(d-1)~r 1 -- 2Z • cos(2~rri/N ) = 0 (35) 
i=1 

where r = (r I . . . .  , rd-1) r u n s  over the reciprocal lattice sites. 
The sum in (35) can be evaluated very easily (15~ for d = 2 giving 

W ( z ; o - ~ o )  = (1 - 4z2)-1/2(1 -I- xN) / (1  -- X N) (36) 

where x = [ 1 -  ( 1 -  4z2)~/2]/2z. Hence a zero occurs when 1 + x N= 0, 
whose solution is z 2 =  �88 1)~r/N] with p = 1 . . . . .  N. The zero 

closest to the origin is at z 2 = �88 The radius of convergence of 

C'(z) for d - -  2 is therefore �88 The reciprocal of this radius then 

gives X 2 = 4cos2(~r/N),  which is precisely the expression we obtained by 
diagonalizing the transfer matrix at the beginning of this section. 

For  the three-dimensional IA model  the sum in (35) cannot  be evalu- 
ated in closed form but  the asymptot ic  behavior  of W(z; o ~ o) has been 
determined by Montrol l  (~5) to be 7 

W ( z ; o ~ o )  = 1 / [ N ~ ( 1  - 4 z ) ]  + ~ - ' l n N 2  + s c 3 / N 2 +  ' ' "  (37) 

as N - ~  ~ with 11 - 4 z l N  2 sufficiently small. The relevant zero of W(z; o 
o) may  be determined f rom the first two terms to be 

z 0 ~  1 / 4  + ~ / ( 8 N Z l n U )  (38) 

Therefore, for the IA  model  with d = 3  we have X2 = 1 / z 0 2 ~ 1 6 [ 1 -  
u / (NZ lnN)]  and  ln(X2/16 ) ~ - ~ / ( N 2 1 n N )  as stated previously. 

Following Ref. 14, the relevant asymptot ic  behavior  of W(z; o ~ o) for 
higher dimensions can be obtained as 

+ higher-order terms (39) 

where the first term represents the contr ibution f rom r = 0 while in the 
second term r = 0 is excluded f rom the summation.  Replacing the summa-  
tion by an integral, in polar coordinates, f rom r = 1 to r = a (N  - 1) where 
a is a constant,  the zero of W ( z ; o ~ o )  is found  to vary as ( 1 -  qz) 
~ N  - ( d - l )  which gives ~ 2 ~ q 2 ( 1 -  c/Nd-1). Therefore for d > 3 our 
ansatz suggests that  gn(N), as defined after (3), remains bounded  as N ~ 

7 This is MontroU's Eq. (B37) with two notational differences, namely, our z is 1/4 of his z 
and our N 2 is his N. 



Critical Behavior of a Three-Dimensional Dimer Model 373 

which yields a quadratic, 0 2, term in the expansion of the free energy. This 
in turn gives a finite discontinuity in the specific heat. Thus, d = 3 is the 
critical dimensionality for the K-model  generalized to arbitrary dimensions. 
For continuous dimensionalities in the range 1 < d < 3 we believe (based 
on our ansatz and on our analysis of the random walk formula analytically 
continued to nonintegral dimensions) that (6) is correct. This gives a = (3 - 
d)//2 for 1 < d <  3. 

A parallel analysis has also been carried out for the three-dimensional 
lipid analog model, mentioned in the Introduction: a logarithmic term of 
the same form as obtained for the three-dimensional IA model is again 
found. 

5. CONCLUSION 

We have obtained the exact asymptotic behavior of the largest eigen- 
value of the n = 2 block of the transfer matrix for the IA dimer model in all 
dimensions. Together with the ansatz explained in Sections 2 and 3 these 
results suggest the following behavior of the specific heat, C(T), and its 
exponents ~ and a ' :  

for T < T~, a '  = 0 (finite) in all dimensions [with C(T) =- 0]; 
for T > To; 

= 1//2 for d =  2 in agreement with the exact solution (3) and 
a = (3 - d)/2 more generally for 1 < d < 3; 
a = 0 (log divergence) for d = 3; 
a = 0 (finite) for d > 3. 
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